OCT Angiography

David Huang, MD, PhD
Weeks Professor of Ophthalmic Research
Professor of Ophthalmology & Biomedical Engineering
Casey Eye Institute, Oregon Health & Science University
Portland, Oregon

OCT captures tissue function as well as structure

<table>
<thead>
<tr>
<th>Signal</th>
<th>Information</th>
<th>En Face</th>
<th>Cross Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>Anatomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doppler shift (between consecutive A-scans)</td>
<td>Total retinal blood flow (global circulation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decorrelation (between consecutive B-scans)</td>
<td>Angiography (local circulation)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Imaging blood flow is important because the leading causes of irreversible blindness are caused by abnormal circulation.

Glaucoma

Diabetic Retinopathy

Macular Degeneration

David Huang, MD, PhD www.AIGStudy.net

High-Speed Swept-Source OCT

Developed by MIT Optic & Quantum Electronic Group (Fujimoto) and OHSU Center for Ophthalmic Optics and Lasers (Huang)

Performance features:

- 100,000 axial scans/sec
- 1050 nm tunable laser (deep penetration)
- 5.3 µm axial resolution in tissue

Potsaid B, et al., Optics Express 2010; 18:20029

Experimental System - Not FDA-approved
Scan time of one 3D volume = 3.4 sec

OCT amplitude-decorrelation angiography uses intrinsic contrast – no dye injection!

Problem: 8 frames at one position do not provide sufficient angiography quality
Solution: Split-Spectrum Amplitude Decorrelation (SSADA) Algorithm

8 frames at one position now provides good angiography quality

Comparison of Angiography Algorithms

More continuous microvascular network

Less Noise >2x SNR

Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Optics Express 2012; 20:4710
3D OCT Angiography of Optic Nerve Head

3x3x3 mm OCT
3D angiography acquired in a 3-second scan

SSADA algorithm used

Reflectance (Structure) Decorrelation (Flow)

3D OCT Angiography of Optic Nerve Head – Layer by Layer

3x3x3 mm OCT
3D angiography acquired in a 3-second scan

SSADA algorithm used
OCT Angiography Showing Reduced ONH Blood Flow in Pre-Perimetric Glaucoma

Normal (OS)

ONH flow index = 0.159

Preperimetric Glaucoma (OS)

ONH flow index = 0.125

Pilot Study Subject Characteristics

- **Normal**
 - 24 eyes of 24 subjects
 - Age: 52±10 years (mean ± SD)
- **Glaucoma**
 - 11 eyes of 11 subjects
 - 8 perimetric glaucoma, 3 pre-perimetric glaucoma
 - Age: 68±10 years

David Huang, MD, PhD, John Morrison, MD, Yali Jia, PhD www.AIGStudy.net
Variability of Disc Flow Index
(2x 2y registered OCT angiogram)

Normal Subjects

<table>
<thead>
<tr>
<th></th>
<th>Intra-Visit Repeatability (n = 4)</th>
<th>Inter-Visit Reproducibility (n = 4)</th>
<th>Inter-Subject Variability (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2%</td>
<td>4.2%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

Less variable than OCT NFL measurement!

ONH flow index highly correlated with visual field

No overlap between normal & glaucoma groups
100% sensitivity
100% specificity
OCT Angiography of Age-Related Macular Degeneration: Type I Choroidal Neovascularization (CNV)

CNV between RPE & Bruch’s membrane

3-Color OCT Angiography
- Inner retinal flow
- Outer retinal flow
- Choroid flow
- Structural OCT

Yali Jia, PhD
David Huang, MD, PhD
www.COOLLab.net

Type II CNV

CNV above RPE

3-Color OCT Angiography
- Inner retinal flow
- Outer retinal flow
- Choroid flow
- Structural OCT

Yali Jia, PhD
David Huang, MD, PhD
www.COOLLab.net
3D OCT Angiography Fly-Through
Layer by Layer

Type II CNV

3-Color OCT Angiography
- Inner retinal flow
- Outer retinal flow
- Choroid flow
- Structural OCT

Yali Jia, PhD; David Huang, MD, PhD www.COOLLab.net

OCT Angiography (SSADA) v. Fluorescein/ICG Angiography

OCT Advantages
- 3 dimensional
 - Easily separates disc, retinal, and choroidal circulations
 - Distinguish CNV above or below RPE
 - Sections & projections along any plane
- Quantitative
 - Flow index
- No injection
 - No vomiting or anaphylactic reaction

OCT Disadvantages
- Small field (3-4 mm)
 - Field will increase with higher speed
- No visualization of leakage and stain
 - But can visualize fluid space and retinal thickening

David Huang, MD, PhD www.AIGStudy.net
Grants & Material Supports

Unrestricted grant from Research to Prevent Blindness

Grant & material support from Optovue, Inc.

R01 EY013516 www.AIGStudy.net
Acknowledgements

MIT
Benjamin Potsaid, PhD
Jonathan J. Liu
Bernhard Baumann, PhD
Chen D. Lu
Woo Jhon Choi
James G. Fujimoto, PhD

University Erlangen-Nuremberg
Martin F. Kraus
Joachim Hornegger, PhD

Casey Eye Institute, OHSU

Glaucoma service
John C. Morrison, MD
Beth Edmunds, MD, PhD
Mansi Parikh, MD

Retina service
Steven T. Bailey, MD
Christina J. Flaxel, MD
Andreas K. Lauer, MD
Thomas S. Hwang, MD
Michael L. Klein, MD
David J. Wilson, MD

www.COOLLab.net